Industrial Ethernet Cable for Industrial Automation Applications

At Schaedler Yesco
Suji Sullivan, General Cable
April 26, 2016
Industrial Ethernet Advantages

• **Industrial Ethernet can allow for better and easier sharing of information over one network**
 – Think “Internet of Things”
 – Faster data transmission rates

• **Cables are specifically designed to function in harsh industrial settings**
 – High EMI “Noisy Environments”
 – Chemical Exposure
 – UV Exposure
 – Less risk of downtime due to cable failure

• **Cables are specifically designed to meet regulatory and performance requirements**
 – Allows for more flexible installation options

• **Ethernet is already established in the premise & commercial world**
Premise Environments and Cable
What is a Premise Environment?

- Commercial building facilities
 - Office buildings, hotels, convention centers, sports arenas, etc.
 - Office side of a manufacturing or industrial facility
 - Data Center
- Education facilities
- Healthcare facilities

Clean and benign cable friendly facilities
Premise Environments for Cable

• Cable is typically installed in concealed locations

• Cables are not exposed to hazardous conditions or foreign chemicals and contaminants

• Very little interaction with cables after installation

Static environments. Install it and forget it!
Premise Ethernet Applications

Typical Applications

• Email, Phone, VoIP, Internet Traffic, Video, PoE (for VoIP, cameras and other smaller devices), Data Centers

Generally, applications in a premise installation are NOT deterministic or “Real Time”

So what does that mean when there is an issue?
Standards for Premise Cables
(For North American Market)

Safety Codes and Fire Ratings
National Fire Protection Association (NFPA), the National Electric Code (NEC®), and local jurisdiction having authority (AHJ) are responsible for safety codes and ratings

- NFPA 70 (NEC) and local AHJ
- UL 444 for Communications Cables
 - NFPA 262 for CMP Rated Cable
 - UL1666 for CMR Rated Cable
 - UL1685 for CM Rated Cable
 - VW-1 for CMX Rated Cable

Transmission Performance Standards
Largely controlled by the Telecommunications Industry Association (TIA)

- ANSI/TIA 568-C.2
 - Defines structured cabling installation configurations and performance requirements
 - Covers all electrical performance requirements like NEXT, RL, IL, etc.
 - Covers requirements for Cat 3, Cat 5e, Cat 6 and Cat 6A

Safety ratings and transmission performance
Premise Cable Construction

- Primary design focus is fire rating (CMR, CMP, etc.) and electrical performance (Cat 5e, Cat 6, etc.)

- Almost all premise cables are 4 pair
- Majority of cables are Unshielded, UTP type cables
Data Transmission Performance and Applications

- The design of premise cables allows them to have improved data transmission performance over other types of networks.

<table>
<thead>
<tr>
<th>Cable/Property</th>
<th>Cat 3</th>
<th>Cat 5E</th>
<th>Cat 6</th>
<th>DeviceNet™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth (MHz)</td>
<td>16 MHz</td>
<td>100</td>
<td>250</td>
<td>1 MHz</td>
</tr>
<tr>
<td>Speed (MB/s)</td>
<td>10 MB/s</td>
<td>100 MB/s</td>
<td>1 GB/s</td>
<td>≤500 KB/s</td>
</tr>
</tbody>
</table>
Industrial vs. Premise Environments

Why and How Are They Different?
Environment Comparison

Premise Overview

• Typically cable-friendly benign environments with little to no EMI noise
• Less demanding applications
• Standards limited to transmission performance and safety ratings

Industrial Overview

• Harsh environments that expose cable to unfavorable climatic conditions
• Locations with many potential EMI and electrical noise sources
• Operation critical applications like motion control for automation
• Many additional application-specific standards to consider

A lot of things to consider…
Industrial Ethernet – Factory Floor Areas

Image courtesy of Panduit Corp.
Wiring Methods – Structured vs. Point to Point

Structured Cabling
- Adopted from IT in the enterprise down to the manufacturing machine or process equipment
- In use for over 25 years in manufacturing to connect proprietary control networks, and is now migrating to Ethernet connecting devices

Point to Point Cabling
- Copper or fiber cable terminated with connectors
- Connected by patch cords to active equipment
- Copper or fiber cable with field terminated connectors
- Directly connected to device or machine ports

Image courtesy of Panduit Corp.

Structured Cabling

Ring and Bus Topology

Installations- Continued

Typical Premise Wall Plate

Premise Wall Plate on Plant Floor

Lower Images courtesy of Panduit

Panduit IP67 Stainless Sealed Wall Plate and Connector

Panduit M12 D-Code Connector
Standards for Industrial Ethernet Cables
(For North American Market)

Codes and Ratings
• NFPA 70 (NEC) and local JHA
 – Still applies in some applications
 – NEC Article 725
• UL 444 for Communications Cables
 – NFPA 262 for CMP Rated Cable
 – UL1666 for CMR Rated Cable
 – UL1685 for CM Rated Cable
 – VW-1 for CMX Rated Cable
• NFPA 79 for Industrial Machinery
• UL13 for PLTC Cables
• UL508A for premanufactured enclosures

Transmission Performance Standards
Largely still controlled by the TIA as well as some other organizations
• ANSI/TIA 568-C.2
 – Still applies as the base standard
 – Other standards become more stringent than this one and add additional requirements
• ANSI/TIA 1005
• ODVA/EtherNet/IP™
• TIA TSB – 185
• ISO/IEC 24702 (International)
• And standards for several other proprietary networks and applications

More standards for additional hazards and applications
MICE Levels and TIA TSB-185

• MICE stands for *Mechanical, Ingress, Climatic and Electromagnetic* and is used to help classify and quantify the harshness of specific industrial environmental conditions immediately surrounding a cabling channel.

In 2009, TIA wrote the *Technical Service Bulletin (TSB) 185* as a tutorial to help installers and end users better understand MICE levels, how to characterize their applications, and select hardware.

MICE levels are a helpful tool, but not a standard requirement!
Industrial Ethernet Applications

- Process, Motion and Automation Control
 - ODVA EtherNet/IP™ and others
- Other “Real-Time” deterministic applications
- Applications in Classified Hazardous Areas
- Building Automation
- General Communications
 - Phones, PC workstations, etc.

A few things could happen…
- Machine malfunction and possible damage
- Increased scrap and material waste
- Machine and line shut down

What happens when there is a network issue and applications crash?

Wasted production time, material, and money!
Industrial Ethernet Cables

Why and how are they different?
Physical Differences in Cables

• Based on the requirements of a given installation, different ratings may be needed in addition to normal UL444 and NEC ratings
 – 600 V AWM, CMX Outdoor – CMR, PLTC, PLTC – ER

• Based on the ratings needed, different thicknesses of cable jackets may be required - abrasion, impact, crush

| UL 444 CMR Cable | 600V AWM, CMR Cable | 600V AWM, UL 13 PLTC-ER, CMR Cable | 600V AWM, UL 13 PLTC, SUN RES, OIL RES DeviceNet™ Cable |

![Cables Comparison](image-url)
Material Comparison

In additional to thicker and tougher jackets, many different materials are also used for a variety of reasons

<table>
<thead>
<tr>
<th>Material/Property</th>
<th>Premise (PVC)</th>
<th>Industrial PVC</th>
<th>FRPE/FRPO LSZH</th>
<th>FEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Tensile Strength (PSI)</td>
<td>2000 - 3100</td>
<td>2000 - 3100</td>
<td>1500 - 2500</td>
<td>3000 - 4000</td>
</tr>
<tr>
<td>Elongation</td>
<td>200 - 350</td>
<td>200 - 350</td>
<td>150 - 200</td>
<td>200 - 500</td>
</tr>
<tr>
<td>Brittle Point (°C)</td>
<td>0 to -20</td>
<td>-20 to -40</td>
<td>-20 to -60</td>
<td>-40 to -20</td>
</tr>
<tr>
<td>Oxygen Index (%)</td>
<td>30 - 50</td>
<td>40 - 50</td>
<td>25 - 45</td>
<td>90+</td>
</tr>
<tr>
<td>Oil Resistance</td>
<td>N/A</td>
<td>OIL RES</td>
<td>OIL RES</td>
<td>Varied</td>
</tr>
<tr>
<td>UV Resistance</td>
<td>N/A</td>
<td>SUN RES</td>
<td>SUN RES</td>
<td>Varied</td>
</tr>
<tr>
<td>Max Temp Rating (°C)</td>
<td>75</td>
<td>105</td>
<td>105</td>
<td>200</td>
</tr>
</tbody>
</table>
Oil Exposure Comparison

Oil and dirt built-up on sensor cables

Close up of cable meeting UL OIL RES I

Close up of cable with poor oil resistance

Cables jackets were aged in oil for 4 days at 100°C
UV Exposure Example

- Many Industrial Ethernet cables are designed to meet UL444 CMX Outdoor and SUN RES requirements
 - This provides the flexibility to install cable outdoors and in UV light

Premise jackets are not intended for UV exposure…
• Standards like ANSI/TIA 1005 and ODVA EtherNet/IP™ have special requirements in addition to ANSI/TIA 568-C.2 built on the “E” portion of the MICE table

 – Performance parameters like Return Loss, Balance and Shielding requirements are enhanced
Industrial Ethernet – Factory Sources of Noise Levels

Identifying Noise Sources helps determine the selection of cables

<table>
<thead>
<tr>
<th>Devices, Noise Source</th>
<th>“E” Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Motors</td>
<td>E₂ - E₃</td>
</tr>
<tr>
<td>Drives/VFDs</td>
<td>E₃</td>
</tr>
<tr>
<td>Welders</td>
<td>E₃</td>
</tr>
<tr>
<td>Heating</td>
<td>E₂ - E₃</td>
</tr>
<tr>
<td>Radio Communications</td>
<td>E₂ - E₃</td>
</tr>
</tbody>
</table>

ANSI/TIA 1005 and ODVA EtherNet/IP™ allow shielded and unshielded cables
Electrical Performance – Unshielded Cables

• Balance
 – Balanced pairs were initially created to help reduce noise coupling to pairs and reduce interference
 – Cables with better balanced pairs are able to have improved noise immunity from external and internal noise sources
 – All Ethernet cables are designed using Balanced Twisted Pairs making Ethernet inherently capable of noise rejection

• ANSI/TIA 1005 and EtherNet/IP™ both have enhanced balance requirements in the form of TCL and ELTCTL for Cat 5e and up

Industrial Ethernet – Factory Transverse Conversion Loss

The Factory Transverse Conversion Loss, or **TCL**, requirements of UTP channels depend on the electromagnetic noise environment. *(Reference MICE/ANSI/TIA-568C.0)*

TCL Limits for UTP Cables

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency (MHz)</th>
<th>E₁</th>
<th>E₂</th>
<th>E₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>5e</td>
<td>1 ≤ f ≤ 30</td>
<td>53-15log(f)</td>
<td>63-15log(f)</td>
<td>73-15log(f)</td>
</tr>
<tr>
<td></td>
<td>30 < f ≤ 100</td>
<td>60.4 -20log(f)</td>
<td>70.4 -20log(f)</td>
<td>80.4 -20log(f)</td>
</tr>
<tr>
<td>6</td>
<td>1 ≤ f ≤ 30</td>
<td>53-15log(f)</td>
<td>63-15log(f)</td>
<td>73-15log(f)</td>
</tr>
<tr>
<td></td>
<td>30 < f ≤ 250</td>
<td>60.4 -20log(f)</td>
<td>70.4 -20log(f)</td>
<td>80.4 -20log(f)</td>
</tr>
</tbody>
</table>

TCL values greater than 40dB shall revert to the minimum requirement of 40dB.

Premise only has TCL requirements for Cat 6 and no E₂ or E₃ requirements.

Electrical Performance – Shielded Cables

• Coupling Attenuation
 – Used to quantify shielding performance
 – ANSI/TIA1005 and ODVA EtherNet/IP™ have enhanced requirements for E_2 and E_3 EMI environments

DeviceNet™ Thin Cable

78 Ohm Twinax Data Highway Plus Cable

Cat 5e SF/UTP Cable
Industrial Ethernet – Factory Coupling Attenuation

The Coupling Attenuation requirements of screened twisted-pair cabling channels depend on the electromagnetic noise environment. The local environments are described by MICE classifications, E_1, E_2 or E_3.

Coupling Attenuation Limits for ScTP (F/UTP) Cables

<table>
<thead>
<tr>
<th>Category</th>
<th>Frequency (MHz)</th>
<th>Minimum (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>E_1</td>
</tr>
<tr>
<td>5e</td>
<td>$30 \leq f \leq 100$</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>$30 \leq f \leq 250$</td>
<td>$80 - 20 \log(f)$ (Max 40 dB)</td>
</tr>
</tbody>
</table>

NOTE: For EMC purposes, coupling attenuation is normally measured up to 1 GHz.
Electrical Performance – Return Loss

- Return loss and impedance variations can cause BER and signal loss

- ODVA EtherNet/IP™ has enhanced return loss specs compared to standard Cat 5e and Cat 6 cables

- Industrial Ethernet cables are specifically designed and manufactured to have improved RL performance

So What Cable is Needed?
Industrial Ethernet Advantages

• Cables are specifically designed to meet different codes, regulatory and performance requirements
 – NEC, UL444, TIA 1005, TIA 568 – C.2, NFPA 79, UL508A, UL 13, ODVA EtherNet/IP™, UL 600 V AWM and more
 – Allows for more installation options

• Cables are specifically designed and enhanced to function in harsh environments
 – EMI “Noisy Environments”
 – Chemical Exposure
 – Temperature
 – UV Exposure
 – Less risk of downtime due to cable failure

• Many different cable options are available to provide the best solution for a specific environment without being cost prohibitive

<table>
<thead>
<tr>
<th>Category/Options</th>
<th>UTP</th>
<th>Shielded</th>
<th>Armored</th>
<th>Hi-Temp</th>
<th>CCW Armor</th>
<th>Hi – Flex</th>
<th>Jacket Options</th>
</tr>
</thead>
</table>
Industrial Ethernet Examples

- **Enhanced Category 5e Electrical Performance**
 - Better RL and Balance for TIA 1005, Ethernet/IP™, and other demanding applications
- **CMX Outdoor and CMR Rated**
- **Thick Oil and UV/Sun-Resistant PVC Jacket**
 - Also allows for 600 V AWM rating

Cat 5e SF/UTP Cable

Cat 5e 2 Pair F/UTP Cable
Industrial Ethernet – GCC Cables

<table>
<thead>
<tr>
<th>General Cable Part</th>
<th>Category</th>
<th>Shielded</th>
<th>Conductor Type</th>
<th>Jacket Grade</th>
<th>Oil and UV Sunlight Resistant</th>
<th>600V CMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCR1402</td>
<td>5e- UTP, 2 pr.</td>
<td></td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GCR1403</td>
<td>5e- F/UTP, 2 pr.</td>
<td>✓</td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GCR1404</td>
<td>5e- UTP</td>
<td></td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GCR1408</td>
<td>5e- 22 AWG PLTC</td>
<td></td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GCR1410</td>
<td>5e- UTP</td>
<td></td>
<td>Solid</td>
<td>Industrial- Interlocking Armored</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GCR1419</td>
<td>5e- F/UTP</td>
<td>✓</td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GCR1405</td>
<td>5e- F/UTP, Enhanced</td>
<td>✓</td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GCR1407</td>
<td>5e- SF/UTP</td>
<td>✓</td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5136100</td>
<td>5e- OSP, Gel-Filled</td>
<td></td>
<td>Solid</td>
<td>OSP- Halogen Free</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>GCR1440</td>
<td>6- UTP</td>
<td></td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GCR1450</td>
<td>6- UTP, Enhanced</td>
<td></td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>GCR1452</td>
<td>6- F/UTP</td>
<td>✓</td>
<td>Solid</td>
<td>Industrial PVC</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7136100</td>
<td>6- OSP, Gel-Filled</td>
<td></td>
<td>Solid</td>
<td>OSP- Halogen Free</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Thank You for Your Time!

Questions?